
Code (in)Security

Where do code vulnerabilities 
come from.

Shachar Shemesh
http://www.shemesh.biz



What's on the Plan
 General background on the security arena.
 Introduce coding practices that often lead to 

vulnerabilities.
 More details on Buffer Overruns.
 Format strings will be discussed another time.
 Step by step demonstration of exploit code – 

next time.
 Show how these vulnerabilities are exploited.



A Few Terms
 Vulnerability - a software bug that enables an 

attacker to gain undesired capabilities.
 Exploit - the steps required to gain the 

undesired capabilities from the vulnerability.
 Arbitrary code execution - the highest form of 

exploit, allowing an attacker to inject arbitrary 
code into the vulnerable program, and have 
that code executed.



A Few More Terms
 Denial of Service (DoS) - an attack that only 

allows the attacker to inhibit a service, without 
gaining anything else.

 "Owning" a machine - achieving the same (or 
higher) level of control over an attacked 
machine as the legitimate administrator of the 
machine.

 Root kit - a set of files and utilities the 
attacker leaves on the cracked machine, to 
allow easy re-entry, or to collect information 
not otherwise immediately available.



The People
 Hacker - A person with curiosity for making 

things work outside their intended envelope.
 Cracker - A person who exploits 

vulnerabilities in order to gain unauthorized 
capabilities.

 Script Kiddy - A cracker who does not 
understand, and often is also not interested, 
in the mechanics behind the attack tools he/
she uses. These people use tools made by 
others in order to attack machines.



Types of Attacks
 Worms and viruses - the attack is performed 

by an automatic utility, usually not aware of 
who it is attacking.

 Sweep attacks - the attacker (usually a script 
kiddy) is interested in owning as many as 
possible.

 Targeted attacks - an attacker targets a 
specific entity, due to principal, political or 
financial reasons.



Most attacks
today are done

by insiders



Types of Vulnerabilities

It is close to impossible to list 
them all.



Buffer Overruns
 Two major types.

 Stack overruns.
 Heap overruns.

 It is almost impossible to write a C program 
that does not have one.
 BIND, sendmail, Windows NT Kernel, tcpdump, 

etc.
 Arbitrary code execution is relatively easy, 

and becoming easier as new techniques are 
found.
 Recently - also for heap overruns.



Format Strings
 Stems from passing untrusted buffer as 

the format string for "printf" like 
functions.

 Easy to find during an audit, easy to fix.
 Easy to find in the binary, easy to exploit.

 A format string vulnerability that echoes 
the result to the attacker is like giving the 
attacker a debugger into the application.

 Arbitrary code execution exploitation is 
relatively easy.



Incorrect Error Handling
 Not checking a function's return code is not 

always harmless.
 DoS as a result of a disk full, or no memory free.
 WinNuke – A TCP connection to SMB with OOB 

data would cause BSOD.
 Sometimes this can lead to more serious 

problems.
 ICQ long password login problem

 Sometimes it can even lead to arbitrary code 
execution.
 Double free in zlib and many others.



Lack of Input Validation
 Most common among Web applications.
 This can often lead to serious breaches 

in the security model.
 XSS
 Allowing arbitrary queries into the backend 

database.



Rogue Messages (Win32)
 Interactive services – receive messages 

from unprivileged processes.
All of those messages affect the 

execution flow.
Some of those messages copy buffers 

from unprivileged to privileged space.
Some of those messages (WM_TIMER) 

contain pointers that are immediately 
executed.



Race Conditions
 Temporary file creation.

 Most common case - creating a temporary file in 
a location both known, and with access, to an 
attacker.

 Allows bypassing of the security model, changing 
internal program data structures and, in some 
cases, arbitrary code execution.

 Network related races
 ARP poisoning.
 DNS poisoning.



Evolution of a Security Exploit

1)Someone finds a bug.
2)Someone (usually same someone) 

writes a PoC exploit.
3)Someone standardizes the exploit.
4)Script kiddies can now use the exploit to 

break in.
5)A worm can be written to automatically 

exploit.



But They Don't Have the 
Source…
One person talented enough to find the 

bug is enough.
The "Copy Protection" wars of the 80's 

show that no program is above reverse 
engineering.

CSS, GSM, RC4, Word passwords, 
SecureID.



Window of Exposure
A graph describing how likely for a 

given machine to be cracked using a 
given vulnerability.

 Increases slowly the more time the 
vulnerability is there.

 Increases quickly the more time passes 
from the publication.

Decreases once a patch is available.
Greatly decreases once a worm is 

released for that vulnerability.



Full Disclosure
 In the (distant) past, people who found 

vulnerabilities reported them discretely to the 
vendors.
 No fixes at all, or not in a timely manner.
 The "Black Hat" community still knew of problems.
 Problems were never patched.

 The “Full Disclosure” movement.
 Vulnerabilities are reported, but then disclosed to 

the public.
 The negative PR usually forces the vendor to 

patch.
 Master key vulnerability – modern example.



What to Do?
Write bug-free code .
Fix problems as soon as possible.
Create easy to install reliable patches.
Never threaten the revealer of the 

information with legal actions.
 It is amazing how many companies fail this 

simple advice.
 Doesn’t work, but creates a backlash.



What Else to Do?
Security audits.
Code audits.
Design reviews.
Code comments.
Code reuse.
Careful design.
Error handling.
All the other things we all know and 

never do.



End of Part I


